14 research outputs found

    Sliding Controller of Switched Reluctance Motor

    Get PDF

    A Review of Wind Turbine Yaw Aerodynamics

    Get PDF
    The fundamental physics of HAWT aerodynamics in yaw is reviewed with reference to some of the latest scientific research covering both measurements and numerical modelling. The purpose of this chapter is to enable a concise overview of this important subject in rotor aerodynamics. This will provide the student, researcher or industry professional a quick reference. Detailed references are included for those who need to delve deeper into the subject. The chapter is also restricted to the aerodynamics of single rotors and their wake characteristics. Far wake and wind turbine to turbine effects experienced in wind farms are excluded from this review. Finally, a future outlook is provided in order to inspire further research in yawed aerodynamics

    Robusno neizrazito prilagođavanje pojačanja RST regulatora za WECS dvostruko napajani asinkroni generator

    Get PDF
    This paper proposes a new robust fuzzy gain scheduling of RST controller for a Wind Energy Conversion System (WECS) based on a doubly fed induction generator (DFIG). First, a designed fuzzy gain scheduling of RST controller is investigated, in which fuzzy rules are utilized on-line to adapt the RST controller parameters based on the error and its first time derivative. The aim of the work is to apply and compare the dynamic performances of two types of controllers (namely, Polynomial RST and Fuzzy-RST) for the WECS. A vector control with stator flux orientation of the DFIG is also presented in order to achieve control of active and reactive power of the wind turbine transmitted to the grid and to make the wind turbine adaptable to different constraints. The results obtained by simulation prove the effectiveness of the proposed controller in terms of decoupling, robustness and dynamic performance for different operating conditions.U radu je predloženo novo robusno prilagođavanje pojačanja RST regulatora za sustav za pretvorbu energije vjetra (WECS) s dvostruko napajanim asinkronim generatorom (DFIG). Prije svega istražena je sinteza neizrazitog prilagođavanja pojačanja RST regulatora u kojem su neizrazita pravila iskorištena on-line za adaptaciju parametara RST regulatora koji koristi signal pogreške i njegovu prvu vremensku derivaciju. Cilj rada primjena je i usporedba dinamičkih svojstava dva tipa regulatora (polinomski RST i neizraziti RST) za WECS. Također je prikazano vektorsko upravljanje s orijentacijom statorskog toka DFIG-a za postizanje upravljanja aktivnom i reaktivnom snagom vjetroagregata koja se predaje mreži te za prilagodbu vjetroagregata za različita ograničenja. Rezultati prikupljeni provedenim simulacijama pokazuju efektivnost predloženog regulatora kroz rasrpegnutost, robusnost i dinamičke performanse za različite uvjete rada

    Switched Reluctance Motor - Concept, Control and Applications

    No full text
    In the last years, the switched reluctance machines (SRMs) have been the subject of significant developments. SRMs are gaining much interest because of their simplicity in structures, high-output power, high starting torque, wide speed range, rugged and robust construction, reliability, and low manufacturing costs, which make these machines viable for many applications. SRMs include machines of different structures whose common property is the significant variation in the shape of the air gap during rotation. The use of advanced control technologies makes possible the integration of the mechanical and electrical conversion systems in their optimal mode of operation. Different strategies of control can be applied to SRMs, depending on their mode of functioning and the purpose of their applications. The goal of this book is to present recent works on concept, control, and applications in switched reluctance machines

    Electronic Differential and Neuro-Fuzzy Sliding Mode Control with Extended State Observer for an Electric Vehicle System

    No full text
    In this paper a neuro-fuzzy-sliding mode control (NFSMC) with extended state observer (ESO) technique; is designed to guarantee the traction of an electric vehicle with two distinct permanent magnet synchronous motor (PMSM). Each PMSM systems (source-convertermotor) are attached to an electronic differential (ED), in order to adjust the senses of direction of the vehicle, and sustain a stable speed by adapting the difference in velocity of each motor-wheel according to the direction in the case of a turn. Two types of controllers are employed by a hybrid control scheme to assure the control and the performance of the vehicle. This hybrid control scheme guarantees the stability of the vehicle by ED, reduces the chattering phenomena in the PMSM electric motor, and improves the disturbance rejection ability which employs tow types of controllers. The neuro-fuzzy sliding mode control on the direct current loop and ESO controller on the speed loop, and the quadratic current loop; taking into account the dynamic of the vehicle. Simulation runs under Matlab/Simulink to assess the efficiency, and strength of the recommended control method on the closed loop system

    Electronic Differential and Neuro-Fuzzy Sliding Mode Control with Extended State Observer for an Electric Vehicle System

    No full text
    In this paper a neuro-fuzzy-sliding mode control (NFSMC) with extended state observer (ESO) technique; is designed to guarantee the traction of an electric vehicle with two distinct permanent magnet synchronous motor (PMSM). Each PMSM systems (source-convertermotor) are attached to an electronic differential (ED), in order to adjust the senses of direction of the vehicle, and sustain a stable speed by adapting the difference in velocity of each motor-wheel according to the direction in the case of a turn. Two types of controllers are employed by a hybrid control scheme to assure the control and the performance of the vehicle. This hybrid control scheme guarantees the stability of the vehicle by ED, reduces the chattering phenomena in the PMSM electric motor, and improves the disturbance rejection ability which employs tow types of controllers. The neuro-fuzzy sliding mode control on the direct current loop and ESO controller on the speed loop, and the quadratic current loop; taking into account the dynamic of the vehicle. Simulation runs under Matlab/Simulink to assess the efficiency, and strength of the recommended control method on the closed loop system

    Hybrid Fuzzy Sliding Mode Speed Control for an Electric Vehicle Drive

    No full text
    This paper  present a speed hybrid fuzzy-sliding mode control (HFSMC) of a permanent magnet synchronous motor (PMSM) to ensure the traction of an electric vehicle; at the first we applied the sliding mode control (SMC) with three surfaces on the PMSM by  taking into account the dynamics of the vehicle; And afterwards we applied the fuzzy-sliding mode   in which the surface of the speed is replaced by a Fuzzy-PI controller; Simulation under Matlab/Simulink has been carried out to evaluate  the efficiency and robustness of the proposed control on a system drive. It should be noted that the reference speed is the European urban driving schedule ECE-15 cycle
    corecore